氧化型与还原型矽卡岩金矿床地质与成矿特征对比研究Comparative study on the geology and metallogenic characteristics of oxidized and reduced skarn gold deposits
邱锦鸿,卢圣祥,王守旭,鹿峰宾,周荣志,邱昆峰
摘要(Abstract):
中国矽卡岩金矿床资源丰富,累计探明金储量1 871 t,占全国金储量的11%。根据成矿侵入岩地球化学特征,矽卡岩金矿床可分为氧化型与还原型2类。尽管前人对全球矽卡岩金矿床开展了系统性研究,但针对氧化型、还原型矽卡岩金矿床的对比分析仍显不足,其氧化还原性差异的成因机制尚不明确。通过系统梳理前人研究成果,从成矿构造背景、侵入岩特征、蚀变矿物组合、成矿流体特征及成矿模式等方面进行对比研究,得出以下结论:(1)2类矽卡岩金矿床主要形成于大洋岛弧与大陆边缘造山带环境。(2)氧化型矽卡岩金矿床的侵入岩以高氧逸度(■>(■(FMQ)+2))、磁铁矿发育为特征,全岩w(Fe_2O_3)/w(Fe_2O_3+FeO)>0.4;而还原型矽卡岩金矿床的侵入岩以发育钛铁矿及磁黄铁矿为主,w(Fe_2O_3)/w(Fe_2O_3+FeO)■0.75。(3)氧化型矽卡岩金矿床矽卡岩蚀变以透辉石为主,石榴子石含量显著高于辉石,金属元素组合为Au-Cu-Mo-Pb-Zn;还原型矽卡岩金矿床矽卡岩蚀变则以钙铁辉石为主,辉石与石榴子石含量相近,金属元素组合为Au-As-Te-Bi。(4)2类矽卡岩金矿床成矿流体均呈现高温高盐度向中低温低盐度演化的趋势,但还原型矽卡岩金矿床流体富含CH_4。(5)矽卡岩金矿床成矿模式表现为高温富金属热液岩浆流体,通过构造驱动形成进矽卡岩蚀变(石榴子石、透辉石等);随温度降低,在矽卡岩蚀变(含水硅酸盐矿物)主导下,岩石破裂促进金银等矿化形成,最终低温阶段大气降水混入,形成石英-碳酸盐脉,标志成矿结束。不同的是,氧化型矽卡岩金矿床常伴随铜钼矿化形成,而还原型矽卡岩金矿床则常伴有钨锡矿化产出。通过进一步总结矽卡岩金矿床研究中存在的科学问题,提出未来需结合扩散年代学、矿物纳米结构分析及机器学习等前沿技术深化成矿机制研究。
关键词(KeyWords): 矽卡岩;氧化型矽卡岩金矿床;还原型矽卡岩金矿床;成矿构造背景;侵入岩特征;蚀变矿物组合;成矿流体特征;成矿模式
基金项目(Foundation): 国家重点研发计划项目(2023YFC2906900);; 自然资源部深部金矿勘查开采技术创新中心开放课题(LDKF-2023BZX-10);; 山东黄金地质矿产勘查有限公司与中国地质大学(北京)产学研合作项目(23B1014)
作者(Author): 邱锦鸿,卢圣祥,王守旭,鹿峰宾,周荣志,邱昆峰
参考文献(References):
- [1]黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,1(3/4):105-111.
- [2] EINAUDI M T,MEINERT L D,NEWBERRY R J. Skarn deposits[M]∥SKINNER B J.Seventy-fifth anniversary volume.Littleton:Economic Geology Publishing Company,1981:11.
- [3] MEINERT L D.Application of skarn deposit zonation models to mineral exploration[J]. Exploration and Mining Geology,1997,6(2):185-208.
- [4]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床基本地质特征[J].中国地质科学院院报,1986,7(3):59-87.
- [5] LIU L J,ZHOU T F,JIANG S Y,et al.Amphibole geochemistry in the Haobugao skarn Zn-Fe-Sn deposit in the southern Great Xing’an Range:Implications for the ore-forming process[J].Ore Geology Reviews,2024,170:106122.
- [6] ZHANG D Y,JIANG Z R,MENG X,et al.The genesis and mineralization potential of the Kunshan pluton in the Xuancheng district,Eastern China[J].Ore Geology Reviews,2024,173:106237.
- [7] GASPAR M,KNAACK C,MEINERT L D,et al. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J].Geochimica et Cosmochimica Acta,2008,72(1):185-205.
- [8] ETTLINGER A D,MEINERT L D,RAY G E.Gold skarn mineralization and fluid evolution in the Nickel Plate Deposit,British Columbia[J].Economic Geology,1992,87:1 541-1 565.
- [9] DENG J,WANG Q,LI G,et al.Geology and genesis of the giant Beiya porphyry-skarn gold deposit,northwestern Yangtze Block,China[J].Ore Geology Reviews,2015,70:457-485.
- [10] FONTBOTéL,VALLANCE J,MARKOWSKI A,et al. Oxidized gold skarns in the Nambija District,Ecuador[M]∥SILLITOE R H,PERELLóJ,VIDAL C E,et al. Andean metallogeny:New discoveries,concepts,and updates. Littleton:Society of Economic Geologists,2005:341-357.
- [11]陈衍景,陈华勇,ZAW K,等.中国陆区大规模成矿的地球动力学:以夕卡岩型金矿为例[J].地学前缘,2004,11(1):57-83.
- [12] MEINERT L D,DIPPLE G M,NICOLESCU S.World skarn deposits[M]∥HEDENQUIST J W,THOMPSON J F H,GOLDFARB R,et al.One hundredth anniversary volume.Littleton:Society of Economic Geologists,2005:11.
- [13] CHEN Y J,CHEN H Y,ZAW K,et al. Geodynamic settings and tectonic model of skarn gold deposits in China:An overview[J].Ore Geology Reviews,2005(1/2/3/4):139-169.
- [14]赵一鸣,丰成友,李大新.中国矽卡岩矿床找矿新进展和时空分布规律[J].矿床地质,2017,36(3):519-543.
- [15]赵一鸣.世界主要矽卡岩矿床[M].北京:地质出版社,2023.
- [16] CHANG Z,SHU Q,MEINERT L D.Skarn deposits of China[M]∥Society of Economic Geologists.Mineral deposits of China.Littleton:Society of Economic Geologists,2019:189-234.
- [17] BURISCH M,BUSSEY S D,LANDON N,et al.Timing of magmatism and skarn formation at the Limon,Guajes,and Media Luna Gold±Copper Skarn Deposits at Morelos,Guerrero State,Mexico[J].Economic Geology,2023,118(4):695-718.
- [18]冷秋锋.西藏甲玛铜多金属矿床矽卡岩成岩与成矿作用[D].成都:成都理工大学,2016.
- [19]张振,于超,吴志栋,等.胶东玲珑金矿床成矿地质特征及矿床成因[J].黄金,2024,45(7):74-79.
- [20] MEINERT L D,HEFTON K K,MAYES D,et al.Geology,zonation,and fluid evolution of the Big Gossan Cu-Au skarn deposit,Ertsberg District,Irian Jaya[J].Economic Geology,1997,92(5):509-534.
- [21] LANG J R,BAKER T R.Intrusion-related gold systems:The present level of understanding[J].Mineralium Deposita,2001,36(6):477-489.
- [22] LANG J,BAKER T,HART C J R,et al.An exploration model for intrusion-related gold systems[J].SEG Discovery,2000,40(1):6-15.
- [23] THOMPSON J F H,NEWBERRY R J.Gold deposits related to reduced granitic intrusions[J]. Reviews in Economic Geology,2000,13:377-400.
- [24] THOMPSON J F H,SILLITOE R H,BAKER T,et al.Intrusionrelated gold deposits associated with tungsten-tin provinces[J].Mineralium Deposita,1999,34(4):323-334.
- [25] MEINERT L D.Compositional variation of igneous rocks associated with skarn deposits—Chemical evidence for a genetic connection between petrogenesis and mineralization[M]∥THOMPSON J F H.Magmas,fluids,and ore deposits.Ottawa:Mineralogical Association of Canada,1995:401-418.
- [26] MEINERT L D.A review of skarns that contain gold[M]∥LENTZ D R. Mineralized intrusion-related systems. Ottawa:Mineralogical Association of Canada,1998:359-414.
- [27]赵一鸣.夕卡岩矿床研究的某些重要新进展[J].矿床地质,2002,21(2):113-120,136.
- [28]赵一鸣.我国一些重要夕卡岩Pb-Zn多金属矿床的交代分带[J].矿床地质,1997,16(2):25-34.
- [29]赵一鸣,毕承思,李大新.中国主要矽卡岩铁矿床的挥发组份和碱质交代特征及其在成矿中的作用[J].地质论评,1983,29(1):66-74.
- [30]赵一鸣,李大新.中国夕卡岩矿床中的角闪石[J].矿床地质,2003,22(4):345-359.
- [31] LI J W,ZHAO X F,ZHOU M F,et al.Origin of the Tongshankou porphyry-skarn Cu-Mo deposit,eastern Yangtze craton,Eastern China:Geochronological,geochemical,and Sr-Nd-Hf isotopic constraints[J].Mineralium Deposita,2008,43(3):315-336.
- [32] SOMARIN A K.Garnet composition as an indicator of Cu mineralization:Evidence from skarn deposits of NW Iran[J]. Journal of Geochemical Exploration,2004,81:47-57.
- [33] SINCLAIR A J,RADLOWSKI Z A,RAYMOND G F. Mineral inventory of a gold-bearing skarn,the nickel plate mine,Hedley,British Columbia[M]∥DIMITRAKOPOULOS R. Geostatistics for the next century:An international forum in honour of Michel David’s contribution to geostatistics. Dordrecht:Springer Netherlands,1994:64-72.
- [34] BAKER T,LANG J R.Reconciling fluid inclusion types,fluid processes,and fluid sources in skarns:An example from the Bismark Deposit,Mexico[J].Mineralium Deposita,2003,38(4):474-495.
- [35] BAKER T,VAN ACHTERBERG E,RYAN C G,et al.Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J].Geology,2004,32(2):117-120.
- [36] FONTEILLES M,SOLER P,DEMANGE M,et al. The scheelite skarn deposit of Salau(Ariege,French Pyrenees)[J].Economic Geology,1989,84(5):1 172-1 209.
- [37] KU?CU?,GEN?ALIO?LU K G,MEINERT L D,et al.Tectonic setting and petrogenesis of the?elebi granitoid,(K?r?kkale-Turkey)and comparison with world skarn granitoids[J].Journal of Geochemical Exploration,2002,76(3):175-194.
- [38] RAY G E,WEBSTER I C L,DAWSON G L.The stratigraphy of the Nicola Group in the Hedley district,British Columbia,and the chemistry of its intrusions and Au skarns[J].Canadian Journal of Earth Sciences,1996,33(8):1 105-1 126.
- [39] NAKANO T,SHIMAZAKI H,SHIMIZU M. Strontium isotope systematics and metallogenesis of skarn deposits in Japan[J].Economic Geology,1990,85(4):794-815.
- [40] MEINERT L D. Gold in skarns related to epizonal intrusions[J].SEG Reviews,2000,13:347-357.
- [41] MEINERT L D.Igneous petrogenesis and skarn deposits[J].Geological Association of Canada-Special Paper,1993,40:569-583.
- [42] WESTERKAMP M,VICTOR F,KüPPER A.Tracing manufacturing processes using blockchain-based token compositions[J].Digital Communications and Networks,2020,6(2):167-176.
- [43] RAY G E,WEBSTER I C L,ETTLINGER A D.The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks[J].Economic Geology,1995,90(4):920-937.
- [44] NEWBERRY R J,SWANSON S E.Scheelite skarn granitoids:An evaluation of the roles of magmatic source and process[J].Ore Geology Reviews,1986,1(1):57-81.
- [45] SWANSON S E,NEWBERRY R J,COULTER G A,et al.Mineralogical variation as a guide to the petrogenesis of the tin granites and related skarns,Seward Peninsula,Alaska[M]∥STEIN H J,HANNAH J L.Ore-bearing granite systems;petrogenesis and mineralizing processes.Boulder:Geological Society of America,1990:143-160.
- [46] HE W Y,MO X X,HE Z H,et al.The geology and mineralogy of the Beiya Skarn Gold Deposit in Yunnan,Southwest China[J].Economic Geology,2015,110(6):1 625-1 641.
- [47] GAO X Q,SUN X M,FU Y,et al.Garnet geochemistry of the giant Beiya gold-polymetallic deposit in SW China:Insights into fluid evolution during skarn formation[J].Ore Geology Reviews,2022,150:105198.
- [48]和文言.滇西北衙超大型金多金属矿床岩浆作用与成矿模式[D].北京:中国地质大学(北京),2014.
- [49]涂伟.安徽铜陵朝山矽卡岩型金矿的特征和成因[D].北京:中国地质大学(北京),2014.
- [50]刘艳鹏.吉林省集安地区矽卡岩型金、铜铅锌矿床成矿作用与地球动力学背景[D].长春:吉林大学,2023.
- [51]薛静,戴塔根,息朝庄.青海同仁双朋西金铜矿矿床地质特征及矿床成因[J].岩石矿物学杂志,2012,31(1):28-38.
- [52]路英川,刘家军,张栋,等.西秦岭双朋西矽卡岩型金铜矿床花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J].岩石学报,2017,33(2):545-564.
- [53]杨立朋.青海省循化县谢坑铜金矿矽卡岩成因[D].北京:中国地质大学(北京),2008.
- [54]祁婧.西藏甲玛矿床则古朗北矿段含矿斑岩年代学及地球化学特征[D].北京:中国地质大学(北京),2021.
- [55]彭惠娟,汪雄武,侯林,等.西藏甲玛铜多金属矿床岩浆-热液过渡阶段的矿物学证据[J].成都理工大学学报(自然科学版),2012,39(1):40-48.
- [56] KIM E J,PARK M E,WHITE N C.Skarn gold mineralization at the Geodo mine,South Korea[J].Economic Geology and the Bulletin of the Society of Economic Geologists,2012(3):537-551.
- [57] VALLANCE J,FONTBOTéL,CHIARADIA M,et al. Magmaticdominated fluid evolution in the Jurassic Nambija gold skarn deposits(southeastern Ecuador)[J]. Mineralium Deposita,2009,44(4):389-413.
- [58] SOLOVIEV S G,KRYAZHEV S,DVURECHENSKAYA S.Geology,mineralization,and fluid inclusion study of the Kuru-Tegerek AuCu-Mo skarn deposit in the Middle Tien Shan,Kyrgyzstan[J].Mineralium Deposita,2018,53(2):195-223.
- [59]赵春涛.黑龙江中部矽卡岩型金、铁铜多金属矿床成矿作用、成矿模式及地球动力学背景[D].长春:吉林大学,2021.
- [60]张立亚.黑龙江老柞山金矿矿床地质特征及矿化富集规律研究[D].长春:吉林大学,2008.
- [61]耿瑞,李怡欣,张姗,等.黑龙江省老柞山金矿床地质、碳-氢-氧和硫-铅多元同位素特征及矿床成因探讨[J].黄金,2024,45(10):25-31.
- [62] ETTLINGER A D,MEINERT L D,RAY G E.Gold skarn mineralization and fluid evolution in the Nickel Plate Deposit,British Columbia[J].Economic Geology,1992,87(6):1 541-1 565.
- [63] QIU K F,DENG J.Petrogenesis of granitoids in the Dewulu skarn copper deposit:Implications for the evolution of the Paleotethys ocean and mineralization in Western Qinling,China[J].Ore Geology Reviews,2016,90:1 078-1 098.
- [64] SUI J X,LI J W,WEN G,et al.The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo district,West Qinling orogen,China:Implications for an intrusion-related gold system[J]. Ore Geology Reviews,2017,80:1 230-1 244.
- [65] HICKEY R J.The Buckhorn Mountain(Crown Jewel)gold skarn deposit,Okanogan County,Washington[J]. Economic Geology,1992,87(1):125-141.
- [66] REDIN Y O,REDINA A A,PROKOPIEV I R,et al.The Lukoganskoe Au-Cu Skarn Deposit(Eastern Transbaikalia):Mineral composition,age,and formation conditions[J]. Russian Geology and Geophysics,2020,61(2):174-195.
- [67] SOLOVIEV S G,KRYAZHEV S G,DVURECHENSKAYA S S.Geology,mineralization,and fluid inclusion characteristics of the Meliksu reduced tungsten skarn deposit,Alai Tien Shan,Kyrgyzstan:Insights into conditions of formation and regional links to gold mineralization[J].Ore Geology Reviews,2019,111:103003.
- [68] MUELLER A G,NEMCHIN A A,FREI R.The Nevoria Gold Skarn Deposit,Southern Cross Greenstone Belt,Western Australia:Ⅱ.Pressure-temperature-time path and relationship to postorogenic granites[J].Economic-eology and the-ulletin of the Society of Economic Geologists,2004,99(3):453-478.
- [69] FUERTES-FUENTE M,MARTIN-IZARD A,NIETO J G,et al.Preliminary mineralogical and petrological study of the Ortosa AuBi-Te ore deposit:A reduced gold skarn in the northern part of the Rio Narcea Gold Belt,Asturias,Spain[J].Journal of Geochemical Exploration,2000,71(2):177-190.
- [70] CARMICHAEL I S E.The redox states of basic and silicic magmas:A reflection of their source regions?[J].Contributions to Mineralogy and Petrology,1991,106(2):129-141.
- [71] SUN W D,HUANG R F ,HE L,et al.Porphyry deposits and oxidized magmas[J].Ore Geology Reviews,2015,65:97-131.
- [72]兰芸琪.新疆西天山赛博铜矿床与可克萨拉铁铜矿床对比研究[D].北京:中国地质大学(北京),2021.
- [73] KIM E J,PARK M E,WHITE N.Skarn gold mineralization at the Geodo Mine,South Korea[J].Economic Geology,2012,107(3):537-551.
- [74]刘军,王晓彤,何军成,等.还原性矽卡岩型金矿床基本特征、研究现状及在中国前景[J].矿床地质,2024,43(1):1-28.
- [75]李建威,隋吉祥,靳晓野,等.西秦岭夏河—合作地区与还原性侵入岩有关的金成矿系统及其动力学背景和勘查意义[J].地学前缘,2019,26(5):17-32.
- [76] DUNCAN R A. Physical and chemical zonation in the Emerald Lake pluton,Yukon Territory[D].Vancouver:University of British Columbia,1999.
- [77] MCCOY D,NEWBERRY R J,LAYER P,et al. Plutonic-related gold deposits of interior Alaska[J]. Mineral Deposits of Alaska,1997,9:191-241.
- [78] HART C J. Reduced intrusion-related gold systems[M]∥GOODFELLOW W D.Mineral deposits of Canada:A synthesis of major deposit-types,district metallogeny,the evolution of geological provinces,and exploration methods.St. John's:Geological Association of Canada,Mineral Deposits Division,2007:95-112.
- [79] SOLOVIEV S G,KRYAZHEV S G,DVURECHENSKAYA S S,et al. Geology,mineralization,fluid inclusion,and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit,Russian Altai,SW Siberia[J].Ore Geology Reviews,2019,112:103039.
- [80] SOLOVIEV S G,KRYAZHEV S G. Geology,mineralization,and fluid inclusion characteristics of the Kashkasu W-Mo-Cu skarn deposit associated with a high-potassic to shoshonitic igneous suite in Kyrgyzstan,Tien Shan:Toward a diversity of W mineralization in Central Asia[J]. Journal of Asian Earth Sciences,2018,153:425-449.
- [81] ISHIHARA S,SASAKI A. Sulfur isotopic ratios of the magnetiteseries and ilmenite-series granitoids of the Sierra Nevada batholith—A reconnaissance study[J].Geology,1989,17(9):788-791.
- [82] SASAKI A,ISHIHARA S.Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan[J].Contributions to Mineralogy and Petrology,1979,68(2):107-115.
- [83] LIU Y S,HU Z C,ZONG K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICPMS[J].Chinese Science Bulletin,2010,55(15):1 535-1 546.
- [84] DELANO J W.Redox history of the earth’s interior since~3 900 Ma:Implications for prebiotic molecules[J].Origins of Life and Evolution of the Biosphere,2001,31(4/5):311-341.
- [85] PARKINSON I J,ARCULUS R J. The redox state of subduction zones:Insights from arc-peridotites[J].Chemical Geology,1999,160(4):409-423.
- [86]李延河,段超,曾普胜,等.还原性含碳质围岩在斑岩铜矿成矿中的作用[J].地球学报,2020,41(5):637-650.
- [87]徐文刚,张德会.还原性流体与斑岩型矿床成矿机制探讨[J].地质学报,2012,86(3):495-502.
- [88] SAXENA S K,FEI Y.Fluid mixtures in the C H O system at high pressure and temperature[J].Geochimica et Cosmochimica Acta,1988,52(2):505-512.
- [89] LIAO S L,CHEN S Y,DENG X H,et al.Fluid inclusion characteristics and geological significance of the Xi’ao copper-tin polymetallic deposit in Gejiu,Yunnan Province[J].Journal of Asian Earth Sciences,2014,79:455-467.
- [90]吴楚,刘妍,曹明坚,等.还原性斑岩型Cu与Mo-Cu矿特征与形成机制[J].岩石学报,2015,31(2):617-638.
- [91] CAO M,QIN K,LI G,et al.Abiogenic Fischer-Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit,western Junggar,NW-China[J]. Geochimica et Cosmochimica Acta,2014,141:179-198.
- [92] SMITHSON D M. Late Eocene tectono-magmatic evolution and genesis of reduced porphyry copper-gold mineralization at the North Fork deposit,west central Cascade Range,Washington,U.S.A.[D].Vancouver:University of British Columbia,2004.
- [93] SALEMINK J,SCHUILING R D. A two-stage,transient heat and mass transfer model for the granodiorite intrusion at Seriphos,Greece,and the associated formation of contact metasomatic skarn and Fe-ore deposits[M]∥LICHTNER P,HELGESON H C,MURPHY W M. Chemical transport in metasomatic processes. Dordrecht:Springer,1987:547-575.
- [94] WALLMACH T,HATTON C J,DROOP G T R.Extreme facies of contact metamorphism developed in calc-silicate xenoliths in the eastern Bushveld Complex[J]. The Canadian Mineralogist,1989,27(3):509-523.
- [95]张智宇.安徽铜山矽卡岩铜矿床特征与成因[D].北京:中国地质大学(北京),2011.
- [96] DOUGLAS N,MAVROGENES J,HACK A,et al.The liquid bismuth collector model:An alternative gold deposition mechanism[C]∥Geological Society Of Australia.Proceedings of 15th Austrilian geological convention.Crows Nest:Geological Society of Australia,2000:59.
- [97]单思齐,谢桂青,刘文元,等.特提斯西段塞尔维亚Cˇukaru Peki超大型斑岩-浅成低温型铜金矿床的热液蚀变和硫化物分带特征及其找矿方向[J].大地构造与成矿学,2023,47(5):1 085-1 109.
- [98] MOUSSALLAM Y,OPPENHEIMER C,SCAILLET B,et al.Tracking thechangingoxidationstateofErebusmagmas,frommantletosurface,driven by magma ascent and degassing[J].Earth and Planetary Science Letters,2014,393:200-209.
- [99] BROUNCE M,STOLPER E,EILER J.Redox variations in Mauna Kea lavas,the oxygen fugacity of the Hawaiian plume,and the role of volcanic gases in Earth’s oxygenation[J].Proceedings of the National Academy of Sciences,2017(34):8 997-9 002.
- [100] KELLEY K A,COTTRELL E.The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma[J].Earth and Planetary Science Letters,2012,329/330:109-121.
- [101] HART C J R,BAKER T,BURKE M.New exploration concepts for country-rock-hosted,intrusion-related gold systems:Tintina gold belt in Yukon[M]∥TUCKER T L,SMITH M T.The Tintina gold belt:Concepts,exploration and discoveries. Vancouver:British Columbia and Yukon Chamber of Mines,2000:145-172.
- [102] LIN J C,SHARMA R C,CHANG Y A.The Bi-S(bismuth-sulfur)system[J].Journal of Phase Equilibria,1996,17(2):132-139.
- [103] OKAMOTO H,MASSALSKI T B. The Au-Bi(gold-bismuth)system[J].Bulletin of Alloy Phase Diagrams,1983,4(4):401-407.
- [104] HASANOVA G S,AGHAZADE A I,IMAMALIYEVA S Z,et al.Refinement of the phase diagram of the Bi-Te system and the thermodynamic properties of lower bismuth tellurides[J]. JOM,2021,73(5):1 511-1 521.
- [105] MCCOY D T. Mid-Cretaceous plutonic-related gold deposits of interior Alaska:Characteristics,metallogenesis,gold-associative mineralogy and geochronology[D].Firebanks:University of Alaska Firebanks,2000.
- [106] CIOBANU C L,BIRCH W D,COOK N J,et al.Petrogenetic significance of Au-Bi-Te-S associations:The example of Maldon,Central Victorian gold province,Australia[J]. Lithos,2010,116(1/2):1-17.
- [107] KWAK T A P.Fluid inclusions in skarns(carbonate replacement deposits)[J].Journal of Metamorphic Geology,1986,4(4):363-384.
- [108] MEINERT L D,HEDENQUIST J W,SATOH H,et al.Formation ofanhydrousandhydrousskarninCu-Auoredepositsbymagmatic fluids[J].Economic Geology,2003,98(1):147-156.
- [109] GERSTNER M R,BOWMAN J R,PASTERIS J D.Skarn formation at the MacMillan Pass tungsten deposit(MacTung),Yukon and Northwest Territories;Ⅰ,P-T-X-V characterization of the methane-bearing,skarn-forming fluids[J]. The Canadian Mineralogist,1989,27(4):545-563.
- [110] BEESKOW B,TRELOAR P J,RANKIN A H,et al.A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex,Kola Peninsula,Russia[J].Lithos,2006,91(1):1-18.
- [111] LIU W,FEI P X.Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion:The mantle dynamics underneath the Palaeo-Asian Ocean through to the post-collisional period[J]. Earth and Planetary Science Letters,2006,242(3):286-301.
- [112] FIEBIG J,WOODLAND A B,D’ALESSANDRO W,et al.Excess methane in continental hydrothermal emissions is abiogenic[J].Geology,2009,37(6):495-498.
- [113] KENNEY J F,KUTCHEROV V A,BENDELIANI N A,et al.The evolution of multicomponent systems at high pressures:Ⅵ. The thermodynamic stability of the hydrogen-carbon system:The genesis of hydrocarbons and the origin of petroleum[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(17):10 976-10 981.
- [114] LIU J,MAO J W,LAI C K,et al.Contrasting geochemical signatures between fertile and barren granites and multi-isotope(SrNd-Pb-S-He)study in the Lamasu-Saibo deposit,NW China:Implications for petrogenesis and ore genesis[J].Ore Geology Reviews,2022,149:105114.
- [115] ROWINS S M. Reduced porphyry copper-gold deposits:A new variation on an old theme[J].Geology,2000,28(6):491-494.
- [116] UENO Y,YAMADA K,YOSHIDA N,et al.Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J].Nature,2006,440:516-519.
- [117] TAKAGI T.Origin of magnetite-and ilmenite-series granitic rocks in the Japan arc[J].American Journal of Science,2004,304:169-202.
- [118] QIU K F,DENG J,LAFLAMME C,et al.Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J].Geochimica et Cosmochimica Acta,2023,343:133-141.
- [119] MCCOLLOM T M,LOLLAR B S,LACRAMPE-COULOUME G,et al.The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions[J].Geochimica et Cosmochimica Acta,2010,74(9):2 717-2 740.
- [120] DIASáS,MILLS R A,RIBEIRO DA COSTA I,et al.Tracing fluid-rock reaction and hydrothermal circulation at the Saldanha hydrothermal field[J].Chemical Geology,2010,273(3/4):168-179.
- [121]申萍,潘鸿迪.中国还原性斑岩矿床研究进展及判别标志[J].岩石学报,2020,36(4):967-994.
- [122] SHIMAZAKI H,SHIMIZU M,NAKANO T. Carbon and oxygen isotopes of calcites from Japanese skarn deposits[J].Geochemical Journal,1986,20(6):297-310.
- [123] SHIMAZAKI H,KUSAKABE M. Oxygen isotope study of the Kamioka Zn-Pb skarn deposits,Central Japan[J].Mineralium Deposita,1990,25(3):221-229.
- [124] TROCH J,AFFOLTER S,HARRIS C,et al.Oxygen and hydrogen isotope analysis of experimentally generated magmatic and metamorphic aqueous fluids using laser spectroscopy(WS-CRDS)[J].Chemical Geology,2021,584:120487.
- [125] SAHLSTR?M F.S